High-Performance Ideal Lattice-Based Cryptography on 8-Bit AVR Microcontrollers

Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy, Tim Güneysu, Johann Großschädl, Howon Kim, Ingrid Verbauwhede

ACM Transactions on Embedded Computing Systems (TECS) TECS Volume 16 Issue 4, July 2017 Article No. 117, ACM New York, NY, USA.


Abstract

Over recent years lattice-based cryptography has received much attention due to versatile average-case problems like Ring-LWE or Ring-SIS that appear to be intractable by quantum computers. In this work, we evaluate and compare implementations of Ring-LWE encryption and the bimodal lattice signature scheme (BLISS) on an 8-bit Atmel ATxmega128 microcontroller. Our implementation of Ring-LWE encryption provides comprehensive protection against timing side-channels and takes 24.9ms for encryption and 6.7ms for decryption. To compute a BLISS signature, our software takes 317ms and 86ms for verification. These results underline the feasibility of lattice-based cryptography on constrained devices.

[ACM] [pdf]

Tags: