On the Security of Cracking-Resistant Password Vaults

Maximilian Golla, Benedict Beuscher, and Markus Dürmuth

Horst Görtz Institute for IT-Security
Ruhr-University Bochum
Password Vaults

LastPass Password Mgr” by LastPass, “iCloud Keychain iOS 9” by 9to5mac.com
Password-based Encryption (PBE)

- Master Password \texttt{mpw}
- Salt \texttt{salt}
- Domain Password \texttt{pwd}
- Key Derivation Function
- Encryption / Decryption
- Ciphertext \texttt{c}
Normal Password Vault

Correct Master Password

Incorrect Master Password

Try again, ...
Cracking-Resistant Password Vault

Correct Master Password

Incorrect Master Password

Decoy!\[1\]

Password-based Encryption (PBE)

If MPW is incorrect

DEL34<(ä/!°$901 + #õNUL(°x+#. ,0= @<^SOHzę4!õ°$)!õ? =$°%($ − 4^ACKf Σ3d4
PBE + ?

"I think you should be more explicit here."
PBE + Honey Encryption[2]

[Ref. 2] Ari Juels and Thomas Ristenpart.
Honey Encryption: Security Beyond the Brute-Force Bound. (EUROCRYPT '14)
PBE + Honey Encryption[2] \rightarrow NoCrack[3]

NoCrack (Cracking-Resistant Password Vault)

Honey Encryption (HE)

- Domain Password pwd
- Natural Language Encoder
- Encode (pwd) \rightarrow \hat{s}

- $pwd \leftarrow$ Decode (\hat{s})

Password-based Encryption (PBE)

- Master Password mpw
- Salt $salt$
- Key Derivation Function SHA-256
- Encryption / Decryption AES-CTR
- Ciphertext c

Cracking-Resistant vault based on Honey Encryption. PCFG-based NLE.

[Ref. 3] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas Ristenpart. Cracking-Resistant Password Vaults using Natural Language Encoders. (SP ‘15)
Benefits of Cracking-Resistant Vaults

Attacker needs to **verify every guessed master password by trying to login with some alleged credentials.**

Via Honey Encryption we can generate decoys **on the fly!**
Outline

1. Password Vaults
2. Attack
3. Results
4. Adaptive NLEs
How to Crack a Cracking-Resistant Vault?

Correct Master Password

Bit String s → Natural Language Encoder → Domain Password pwd

A „real“ Password Distribution
How to Crack a Cracking-Resistant Vault?

Incorrect Master Password

Bit String \(S \) → Natural Language Encoder → Domain Password \(pwd \)

Incorrect Password Distribution

Decoy
Attack Idea

• A realistic adversary doesn’t know the “real” password distribution\(^4\)

• but, can approximate NoCrack’s distribution!

• If we observe outliers (not following NoCrack’s distribution), we can use them for ranking.

Attack Overview

1. Approximate Decoy Distribution

2. Trial-Decryption

3. Ranking of Vault Candidates

4. Online Verification
1. Approximate Distribution of Decoy Vaults

Repeatedly sample passwords from the distribution by evaluating the KDF and trial-decrypting the vault.
2. Trial-Decryption

Decrypt vault with candidate master passwords. (Assume the correct master password is in this list.)
3. Ranking of Vault Candidates

Rank candidates so that the real vault is (hopefully) near the top of the list.
4. Online Verification

Go **online** and **verify** the correctness, starting with the highest ranked vault.

1. melissa88
2. RosesAreRed
3. qwerty
4. bond007
Outline

Adaptive NLEs

Results

Attack

Password Vaults
Experimental Setup

- Dataset from previous work[3]. (Org. gathered by malware)

<table>
<thead>
<tr>
<th>Vault Size:</th>
<th>2-3</th>
<th>4-8</th>
<th>9-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>100</td>
<td>89</td>
<td>87</td>
</tr>
</tbody>
</table>

- Ranking with 1,000 vaults (relative ranking)
 - 999 decoy vaults, 1 real vault

[Ref. 3] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas Ristenpart. Cracking-Resistant Password Vaults using Natural Language Encoders. (SP ‘15)
Experimental Setup

• Kullback–Leibler (KL) divergence
 – to measure the difference between the distributions.

\[D_{KL}(P \parallel Q) = \sum_{z \in \text{supp}(P)} P[z] \cdot \log \frac{P[z]}{Q[z]} \]

• Tested influence of approx. precision (1.000 - 30.000.000 vaults)

• Tested different vault sizes (2-50 passwords)
Results

<table>
<thead>
<tr>
<th>Attack</th>
<th>Perfect NLE</th>
<th>Prev. Work [^{[3]}]</th>
<th>Our Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guessing</td>
<td>ML</td>
<td></td>
</tr>
<tr>
<td>Attack</td>
<td>Mean Rank</td>
<td>Median Rank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>37.8%</td>
<td>6.2%</td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>/</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

[^{[3]}]: Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas Ristenpart. Cracking-Resistant Password Vaults using Natural Language Encoders. (SP '15)
Influence of Approximation Precision

![Graph showing the relationship between training size and ranking failure rate.](image)

- **KL Divergence**

The graph illustrates how the ranking failure rate decreases as the training size increases. The x-axis represents the training size (in thousands), and the y-axis represents the ranking failure rate (in %). The data points show a clear downward trend, indicating improved precision with larger training sets.
Difference in Vault Size

<table>
<thead>
<tr>
<th>Vault Size:</th>
<th>2-3</th>
<th>4-8</th>
<th>9-50</th>
<th>All (2-50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Rank</td>
<td>9.6%</td>
<td>6.0%</td>
<td>3.1%</td>
<td>6.2%</td>
</tr>
<tr>
<td>Median Rank</td>
<td>2.1%</td>
<td>1.9%</td>
<td>1.7%</td>
<td>2.0%</td>
</tr>
</tbody>
</table>
Correlation,

Correlation

Name
Maximilian Golla

Choose your username
maximilian.golla.1337 @gmail.com

Create a password
madmax1337
Correlation

Name
Maximilian
Golla

Choose your username
maximilian.golla.1337
@gmail.com

Create a password
madmax1337

Reuse

My Passwords:

Yahoo: madmax1337
Gmail: madmax1337
Facebook: Madmax2016
Tumblr: madmax1337!
Grillshop24: master
Correlation, Reuse, and Policies Issues

Correlation

- **Name**
 - Maximilian
 - Golla

- **Choose your username**
 - maximilian.golla.1337 @gmail.com

- **Create a password**
 - madmax1337

Reuse

- **My Passwords:**
 - Yahoo: madmax1337
 - Gmail: madmax1337
 - Facebook: Madmax2016
 - Tumblr: madmax1337!
 - Grillshop24: master

Policies

- **Password strength:** Strong
 - Use at least 8 characters. Don’t use a password from another site, or something too obvious like your pet’s name. *Why?*

- **Create a password**
 - Password to be entered

- **Confirm your password**
 - Password to be confirmed
Results

<table>
<thead>
<tr>
<th>Attack</th>
<th>Perfect NLE</th>
<th>Prev. Work</th>
<th>Correlation</th>
<th>Reuse</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Rank</td>
<td>Guessing</td>
<td>ML</td>
<td>KL</td>
<td>6.4%</td>
<td>6.2%</td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>37.8%</td>
<td>6.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Rank</td>
<td></td>
<td>/</td>
<td>2.0%</td>
<td>2.1%</td>
<td>2.0%</td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>/</td>
<td>2.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ **KL**: Reduction of required online queries by a factor of **8**.

→ **KL + background info**: Reduction by a factor of **20**.
The Flaw

Improbable password are a strong signal for the real vault.

<table>
<thead>
<tr>
<th>The Real Vault</th>
<th>A Decoy Vault (No. 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>Q:</td>
</tr>
<tr>
<td>kamaria</td>
<td>1.00E-14</td>
</tr>
<tr>
<td>khalilah</td>
<td>1.00E-14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>pinkrose13</td>
<td>1.00E-14</td>
</tr>
<tr>
<td></td>
<td>password</td>
</tr>
<tr>
<td></td>
<td>1.74E-02</td>
</tr>
<tr>
<td></td>
<td>JOHNCENA</td>
</tr>
<tr>
<td></td>
<td>4.02E-06</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>p4ssw0rd</td>
</tr>
<tr>
<td></td>
<td>8.05E-06</td>
</tr>
</tbody>
</table>

→ Change NoCrack’s NLE to simulate the correct aka “the real” password distribution!
Static NLEs
Static NLEs

There is no „the real“ password distribution!
Dist. differs by service and time → We can’t predict it

→ Do not assign low probabilities to passwords that appear in the real vault!
Adaptive NLEs

Boost their probabilities by a constant value

Select a fraction of ALL n-grams (real and decoy)

Re-normalize

Paper gives a bound on the amount of information that is leaked.
Limitations / Future Work

• **Lack of sample data**

• Are master passwords guessable?
 • Is a master password related to the domain passwords inside the vault?

• Improve **adaptive NLEs**
 • Improve attack
Takeaway

1. Honey Encryption → Cracking-Resistant Password Vaults

2. Building an NLE is challenging! (Distribution, Reuse, Correlation, Policies, ...)

3. Adaptive NLE can solve the distribution problem.
Step 3: Ranking Example

The Real Vault

<table>
<thead>
<tr>
<th>Password</th>
<th>P:</th>
<th>Q:</th>
<th>Sum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>kamaria</td>
<td>0.1</td>
<td>1.00E-14</td>
<td>4.651</td>
</tr>
<tr>
<td>khalilah</td>
<td>0.1</td>
<td>1.00E-14</td>
<td>9.302</td>
</tr>
<tr>
<td>kamaria1</td>
<td>0.3</td>
<td>1.00E-14</td>
<td>13.952</td>
</tr>
<tr>
<td>kamaria1</td>
<td>0.3</td>
<td>1.00E-14</td>
<td>18.603</td>
</tr>
<tr>
<td>kamaria1</td>
<td>0.3</td>
<td>1.00E-14</td>
<td>23.254</td>
</tr>
<tr>
<td>pinkrose13</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>27.904</td>
</tr>
<tr>
<td>pinkrose13</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>32.555</td>
</tr>
<tr>
<td>pinkrose13</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>37.206</td>
</tr>
<tr>
<td>pinkrose13</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>41.856</td>
</tr>
<tr>
<td>pinkrose14</td>
<td>0.1</td>
<td>1.00E-14</td>
<td>46.507</td>
</tr>
</tbody>
</table>

A Decoy Vault (No. 23)

<table>
<thead>
<tr>
<th>Password</th>
<th>P:</th>
<th>Q:</th>
<th>Sum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>password</td>
<td>0.4</td>
<td>1.74E-02</td>
<td>0.181</td>
</tr>
<tr>
<td>password</td>
<td>0.4</td>
<td>1.74E-02</td>
<td>0.362</td>
</tr>
<tr>
<td>password</td>
<td>0.4</td>
<td>1.74E-02</td>
<td>0.543</td>
</tr>
<tr>
<td>password</td>
<td>0.4</td>
<td>1.74E-02</td>
<td>0.724</td>
</tr>
<tr>
<td>malinda</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>5.374</td>
</tr>
<tr>
<td>malinda</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>10.025</td>
</tr>
<tr>
<td>malinda</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>14.676</td>
</tr>
<tr>
<td>malinda</td>
<td>0.4</td>
<td>1.00E-14</td>
<td>19.326</td>
</tr>
<tr>
<td>p4ssw0rd</td>
<td>0.1</td>
<td>8.05E-06</td>
<td>19.462</td>
</tr>
<tr>
<td>JOHNCENA</td>
<td>0.1</td>
<td>4.02E-06</td>
<td>19.608</td>
</tr>
</tbody>
</table>

Final Ranking

<table>
<thead>
<tr>
<th>Rank</th>
<th>Vault</th>
<th>KL-Div:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DECOY 12</td>
<td>49.829</td>
</tr>
<tr>
<td>2</td>
<td>REAL</td>
<td>46.507</td>
</tr>
<tr>
<td>3</td>
<td>DECOY 78</td>
<td>42.683</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>712</td>
<td>DECOY 23</td>
<td>19.608</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>999</td>
<td>DECOY 16</td>
<td>4.805</td>
</tr>
<tr>
<td>1000</td>
<td>DECOY 14</td>
<td>0.966</td>
</tr>
</tbody>
</table>

KL-Div: 46.507

KL-Div: 19.608