Global modeling of HiPIMS systems: transition from homogeneous to self organized discharges

S. Gallian1, J. Trieschmann1, T. Mussenbrock1, W. N. G. Hitchon2 and R. P. Brinkmann1

1 Lehrstuhl für Theoretische Elektrotechnik, Ruhr-Universität Bochum
2 Department of Electrical and Computer Engineering, University of Wisconsin-Madison

✉ gallian@tet.rub.de
High Power Pulse Magnetron Sputtering

- Ionized Physical Vapor Deposition technique
- High degree of ionization of sputtered vapor allows film growth control and high film quality
- High power pulse of low frequency and low duty cycle to cathode

Characteristics of HiPIMS plasmas: Film quality vs. efficiency

- **PRO**: Highly energetic metal ions (≈ 10 eV)
- **CONTRA**: Reduced deposition rate (µm/h)

- HiPIMS plasmas are non-stationary and show self-organization in symmetry breaking structures
- Plasma composition evolves during discharge

A Hecimovic, et al., PSST, 21 (2012) 35017
Plasma regimes: different self-organization and chemistry

- Regime II: emission 'chaotic'
- Regime III: stable rotating frequency: spokes
- Regime IV: homogeneous emission

Winter, J Phys D 46, 84007 (2013)

de los Arcos, J Phys D 46, 335201 (2013)
Working Hypothesis on Spokes Formation and Evolution

- HiPIMS discharges sustained by secondary electrons (metal target at -500 V)
- Only Ar\(^+\) and M\(^{2+}\) produce secondary electrons, M\(^+\) cannot (density M\(^+\) \gg M^{2+}\))
- Intermediate/high currents \(\rightarrow\) high sputtering \(\rightarrow\) high metal density \(\rightarrow\) self sputtering

![Diagram showing sputtering, self sputtering, and quenching]

- High M and M\(^+\) density \(\rightarrow\) discharge quenches
- Discharge re-organizes into "spokes", which rotate toward regions of low M and high Ar density
- High ionization regions (spokes) not necessary once population of M\(^{2+}\) sufficiently high.
Homogeneous Volume-Averaged Models

Rate equations for heavy species:

\[n_{\text{Ar}}, \; n_{\text{Ar}^+}, \; n_{\text{Ar}^*-4s}, \; n_{\text{Ar}^*-4s'} \]
\[n_{\text{Al}}, \; n_{\text{Al}^+}, \; n_{\text{Al}^{2+}} \]

Integrated collision cross sections \(\sigma_j \) (m\(^2\))

Maxwellian Equilibrium Global Model (MEGM):

Electron continuity and energy conservation equations

- Low current

Kinetic Global Model (KGM):

Boltzmann’s equation for an isotropic eedf \(f(\varepsilon, t) \)

- Low current
- Intermediate current
- High current
Convergence Procedure

Raw experimental data

Iteration until calculated matches imposed current

MEGM: $P \propto \eta_{PWR} \frac{I_D V_b}{e V_{IR}}$

KGM: $S(\varepsilon, t) = \eta_{PWR} \gamma_{sec} \frac{I_{Ar}(t)}{e V_{IR}} G(\varepsilon)$

Convergence Procedure: eventual feedback

Variable resistance modeled via time varying power coupling efficiency

Raw experimental data

Iteration until calculated matches imposed current

On the fly feedback for better convergence

\[V_b \]
\[R_c \]
\[\eta_{PWR} \]
Low current case ($2 \cdot 10^2 \text{ mA/cm}^2$)

Already at low current, the MEGM is inappropriate

dashed: MEGM
solid: KGM
Intermediate current case (1 \cdot 10^3 \text{ mA/cm}^2)

doubly charged ions non relevant

need feedback on coupling efficiency
High current case (4 \cdot 10^3 \text{ mA/cm}^2)

Al^+ cannot produce secondary electrons
Al^{2+} still negligible

onset of self sputtering
Compare all current cases

For all cases: ion species drift to target as soon as created

\[k_{\text{Al,ion}} n_e n_{\text{Al}} = \Gamma_{\text{Al}} \frac{S_{\text{RT}}}{V_{\text{IR}}}, \quad k_{\text{Ar,ion}} n_e n_{\text{Ar}} = \Gamma_{\text{Ar}} \frac{S_{\text{RT}}}{V_{\text{IR}}} \]

Differences come into play in Al rate eqn

\[\frac{dn_{\text{Al}}}{dt} \approx -k_{\text{Al,ion}} n_e n_{\text{Al}} - \frac{\Gamma_{\text{Al,diff}}}{L} + \left(\Gamma_{\text{Al,Yssp}} + \Gamma_{\text{Al,Ysp}} \right) \frac{S_{\text{RT}}}{V_{\text{IR}}} \approx -\frac{\Gamma_{\text{Al,diff}}}{L} + k_{\text{Ar,ion}} n_e n_{\text{Ar}} \]

\[\begin{cases} \leq 0 - \text{low to intermediate } I_D \\ > 0 - \text{high } I_D \end{cases} \]

need to enhance Al diffusion and Ar ionization!

\[\times 5 \text{ Al diff} \]
\[\times 10 \text{ Ar diff} \]
Conclusions

- High M and M$^+$ density \rightarrow discharge quenches ✓
- Discharge re-organizes into "spokes", which rotate toward regions of low M and high Ar density ✓
- High ionization regions (spokes) not necessary once population of M$^{2+}$ sufficiently high \rightarrow WIP

if enough Ar is ionized the discharge can be maintained even in self sputtering \rightarrow moving ionization regions
Thank you for the attention

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft within the frame of SFB-TR 87